Approximation Bounds for Smooth Functions in C(IRd) by Neural and Mixture Networks

نویسندگان

  • Vitaly Maiorov
  • Ron Meiry
چکیده

We consider the approximation of smooth multivariate functions in C(I R d) by feedforward neural networks with a single hidden layer of non-linear ridge functions. Under certain assumptions on the smoothness of the functions being approximated and on the activation functions in the neural network, we present upper bounds on the degree of approximation achieved over the domain IR d , thereby generalizing available results for compact domains. We extend the approximation results to the so-called mixture of expert architecture, which has received wide attention in recent years, showing that the same type of approximation bound may be achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation bounds for smooth functions in C(Rd) by neural and mixture networks

We consider the approximation of smooth multivariate functions in C(IRd) by feedforward neural networks with a single hidden layer of nonlinear ridge functions. Under certain assumptions on the smoothness of the functions being approximated and on the activation functions in the neural network, we present upper bounds on the degree of approximation achieved over the domain IRd, thereby generali...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Error bounds for approximations with deep ReLU networks

We study expressive power of shallow and deep neural networks with piece-wise linear activation functions. We establish new rigorous upper and lower bounds for the network complexity in the setting of approximations in Sobolev spaces. In particular, we prove that deep ReLU networks more efficiently approximate smooth functions than shallow networks. In the case of approximations of 1D Lipschitz...

متن کامل

On the near optimality of the stochastic approximation of smooth functions by neural networks

We consider the problem of approximating the Sobolev class of functions by neural networks with a single hidden layer, establishing both upper and lower bounds. The upper bound uses a probabilistic approach, based on the Radon and wavelet transforms, and yields similar rates to those derived recently under more restrictive conditions on the activation function. Moreover, the construction using ...

متن کامل

Prediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh

Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996